Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change.

Identifieur interne : 000086 ( Main/Exploration ); précédent : 000085; suivant : 000087

Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change.

Auteurs : Collin W. Ahrens ; Margaret E. Andrew ; Richard A. Mazanec ; Katinka X. Ruthrof ; Anthea Challis ; Giles Hardy ; Margaret Byrne ; David T. Tissue ; Paul D. Rymer

Source :

RBID : pubmed:31988725

Abstract

Climate change is testing the resilience of forests worldwide pushing physiological tolerance to climatic extremes. Plant functional traits have been shown to be adapted to climate and have evolved patterns of trait correlations (similar patterns of distribution) and coordinations (mechanistic trade-off). We predicted that traits would differentiate between populations associated with climatic gradients, suggestive of adaptive variation, and correlated traits would adapt to future climate scenarios in similar ways.We measured genetically determined trait variation and described patterns of correlation for seven traits: photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), leaf size (LS), specific leaf area (SLA), δ13C (integrated water-use efficiency, WUE), nitrogen concentration (NCONC), and wood density (WD). All measures were conducted in an experimental plantation on 960 trees sourced from 12 populations of a key forest canopy species in southwestern Australia.Significant differences were found between populations for all traits. Narrow-sense heritability was significant for five traits (0.15-0.21), indicating that natural selection can drive differentiation; however, SLA (0.08) and PRI (0.11) were not significantly heritable. Generalized additive models predicted trait values across the landscape for current and future climatic conditions (>90% variance). The percent change differed markedly among traits between current and future predictions (differing as little as 1.5% (δ13C) or as much as 30% (PRI)). Some trait correlations were predicted to break down in the future (SLA:NCONC, δ13C:PRI, and NCONC:WD).Synthesis: Our results suggest that traits have contrasting genotypic patterns and will be subjected to different climate selection pressures, which may lower the working optimum for functional traits. Further, traits are independently associated with different climate factors, indicating that some trait correlations may be disrupted in the future. Genetic constraints and trait correlations may limit the ability for functional traits to adapt to climate change.

DOI: 10.1002/ece3.5890
PubMed: 31988725
PubMed Central: PMC6972804


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change.</title>
<author>
<name sortKey="Ahrens, Collin W" sort="Ahrens, Collin W" uniqKey="Ahrens C" first="Collin W" last="Ahrens">Collin W. Ahrens</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Andrew, Margaret E" sort="Andrew, Margaret E" uniqKey="Andrew M" first="Margaret E" last="Andrew">Margaret E. Andrew</name>
<affiliation>
<nlm:affiliation>Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mazanec, Richard A" sort="Mazanec, Richard A" uniqKey="Mazanec R" first="Richard A" last="Mazanec">Richard A. Mazanec</name>
<affiliation>
<nlm:affiliation>Biodiversity and Conservation Science Western Australian Department of Biodiversity, Conservation and Attractions Kensington WA Australia.</nlm:affiliation>
<wicri:noCountry code="subField">Conservation and Attractions Kensington WA Australia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ruthrof, Katinka X" sort="Ruthrof, Katinka X" uniqKey="Ruthrof K" first="Katinka X" last="Ruthrof">Katinka X. Ruthrof</name>
<affiliation>
<nlm:affiliation>Biodiversity and Conservation Science Western Australian Department of Biodiversity, Conservation and Attractions Kensington WA Australia.</nlm:affiliation>
<wicri:noCountry code="subField">Conservation and Attractions Kensington WA Australia</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Centre for Phytophthora Science and Management Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre for Phytophthora Science and Management Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Challis, Anthea" sort="Challis, Anthea" uniqKey="Challis A" first="Anthea" last="Challis">Anthea Challis</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hardy, Giles" sort="Hardy, Giles" uniqKey="Hardy G" first="Giles" last="Hardy">Giles Hardy</name>
<affiliation>
<nlm:affiliation>Centre for Phytophthora Science and Management Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre for Phytophthora Science and Management Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Byrne, Margaret" sort="Byrne, Margaret" uniqKey="Byrne M" first="Margaret" last="Byrne">Margaret Byrne</name>
<affiliation>
<nlm:affiliation>Biodiversity and Conservation Science Western Australian Department of Biodiversity, Conservation and Attractions Kensington WA Australia.</nlm:affiliation>
<wicri:noCountry code="subField">Conservation and Attractions Kensington WA Australia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tissue, David T" sort="Tissue, David T" uniqKey="Tissue D" first="David T" last="Tissue">David T. Tissue</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Rymer, Paul D" sort="Rymer, Paul D" uniqKey="Rymer P" first="Paul D" last="Rymer">Paul D. Rymer</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31988725</idno>
<idno type="pmid">31988725</idno>
<idno type="doi">10.1002/ece3.5890</idno>
<idno type="pmc">PMC6972804</idno>
<idno type="wicri:Area/Main/Corpus">000290</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000290</idno>
<idno type="wicri:Area/Main/Curation">000290</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000290</idno>
<idno type="wicri:Area/Main/Exploration">000290</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change.</title>
<author>
<name sortKey="Ahrens, Collin W" sort="Ahrens, Collin W" uniqKey="Ahrens C" first="Collin W" last="Ahrens">Collin W. Ahrens</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Andrew, Margaret E" sort="Andrew, Margaret E" uniqKey="Andrew M" first="Margaret E" last="Andrew">Margaret E. Andrew</name>
<affiliation>
<nlm:affiliation>Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mazanec, Richard A" sort="Mazanec, Richard A" uniqKey="Mazanec R" first="Richard A" last="Mazanec">Richard A. Mazanec</name>
<affiliation>
<nlm:affiliation>Biodiversity and Conservation Science Western Australian Department of Biodiversity, Conservation and Attractions Kensington WA Australia.</nlm:affiliation>
<wicri:noCountry code="subField">Conservation and Attractions Kensington WA Australia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ruthrof, Katinka X" sort="Ruthrof, Katinka X" uniqKey="Ruthrof K" first="Katinka X" last="Ruthrof">Katinka X. Ruthrof</name>
<affiliation>
<nlm:affiliation>Biodiversity and Conservation Science Western Australian Department of Biodiversity, Conservation and Attractions Kensington WA Australia.</nlm:affiliation>
<wicri:noCountry code="subField">Conservation and Attractions Kensington WA Australia</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Centre for Phytophthora Science and Management Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre for Phytophthora Science and Management Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Challis, Anthea" sort="Challis, Anthea" uniqKey="Challis A" first="Anthea" last="Challis">Anthea Challis</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hardy, Giles" sort="Hardy, Giles" uniqKey="Hardy G" first="Giles" last="Hardy">Giles Hardy</name>
<affiliation>
<nlm:affiliation>Centre for Phytophthora Science and Management Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Centre for Phytophthora Science and Management Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Byrne, Margaret" sort="Byrne, Margaret" uniqKey="Byrne M" first="Margaret" last="Byrne">Margaret Byrne</name>
<affiliation>
<nlm:affiliation>Biodiversity and Conservation Science Western Australian Department of Biodiversity, Conservation and Attractions Kensington WA Australia.</nlm:affiliation>
<wicri:noCountry code="subField">Conservation and Attractions Kensington WA Australia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tissue, David T" sort="Tissue, David T" uniqKey="Tissue D" first="David T" last="Tissue">David T. Tissue</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Rymer, Paul D" sort="Rymer, Paul D" uniqKey="Rymer P" first="Paul D" last="Rymer">Paul D. Rymer</name>
<affiliation>
<nlm:affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="ISSN">2045-7758</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Climate change is testing the resilience of forests worldwide pushing physiological tolerance to climatic extremes. Plant functional traits have been shown to be adapted to climate and have evolved patterns of trait correlations (similar patterns of distribution) and coordinations (mechanistic trade-off). We predicted that traits would differentiate between populations associated with climatic gradients, suggestive of adaptive variation, and correlated traits would adapt to future climate scenarios in similar ways.We measured genetically determined trait variation and described patterns of correlation for seven traits: photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), leaf size (LS), specific leaf area (SLA), δ
<sup>13</sup>
C (integrated water-use efficiency, WUE), nitrogen concentration (N
<sub>CONC</sub>
), and wood density (WD). All measures were conducted in an experimental plantation on 960 trees sourced from 12 populations of a key forest canopy species in southwestern Australia.Significant differences were found between populations for all traits. Narrow-sense heritability was significant for five traits (0.15-0.21), indicating that natural selection can drive differentiation; however, SLA (0.08) and PRI (0.11) were not significantly heritable. Generalized additive models predicted trait values across the landscape for current and future climatic conditions (>90% variance). The percent change differed markedly among traits between current and future predictions (differing as little as 1.5% (δ
<sup>13</sup>
C) or as much as 30% (PRI)). Some trait correlations were predicted to break down in the future (SLA:N
<sub>CONC</sub>
, δ
<sup>13</sup>
C:PRI, and N
<sub>CONC</sub>
:WD).Synthesis: Our results suggest that traits have contrasting genotypic patterns and will be subjected to different climate selection pressures, which may lower the working optimum for functional traits. Further, traits are independently associated with different climate factors, indicating that some trait correlations may be disrupted in the future. Genetic constraints and trait correlations may limit the ability for functional traits to adapt to climate change.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31988725</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2045-7758</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change.</ArticleTitle>
<Pagination>
<MedlinePgn>232-248</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.5890</ELocationID>
<Abstract>
<AbstractText>Climate change is testing the resilience of forests worldwide pushing physiological tolerance to climatic extremes. Plant functional traits have been shown to be adapted to climate and have evolved patterns of trait correlations (similar patterns of distribution) and coordinations (mechanistic trade-off). We predicted that traits would differentiate between populations associated with climatic gradients, suggestive of adaptive variation, and correlated traits would adapt to future climate scenarios in similar ways.We measured genetically determined trait variation and described patterns of correlation for seven traits: photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), leaf size (LS), specific leaf area (SLA), δ
<sup>13</sup>
C (integrated water-use efficiency, WUE), nitrogen concentration (N
<sub>CONC</sub>
), and wood density (WD). All measures were conducted in an experimental plantation on 960 trees sourced from 12 populations of a key forest canopy species in southwestern Australia.Significant differences were found between populations for all traits. Narrow-sense heritability was significant for five traits (0.15-0.21), indicating that natural selection can drive differentiation; however, SLA (0.08) and PRI (0.11) were not significantly heritable. Generalized additive models predicted trait values across the landscape for current and future climatic conditions (>90% variance). The percent change differed markedly among traits between current and future predictions (differing as little as 1.5% (δ
<sup>13</sup>
C) or as much as 30% (PRI)). Some trait correlations were predicted to break down in the future (SLA:N
<sub>CONC</sub>
, δ
<sup>13</sup>
C:PRI, and N
<sub>CONC</sub>
:WD).Synthesis: Our results suggest that traits have contrasting genotypic patterns and will be subjected to different climate selection pressures, which may lower the working optimum for functional traits. Further, traits are independently associated with different climate factors, indicating that some trait correlations may be disrupted in the future. Genetic constraints and trait correlations may limit the ability for functional traits to adapt to climate change.</AbstractText>
<CopyrightInformation>© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ahrens</LastName>
<ForeName>Collin W</ForeName>
<Initials>CW</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0614-9928</Identifier>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Andrew</LastName>
<ForeName>Margaret E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mazanec</LastName>
<ForeName>Richard A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Biodiversity and Conservation Science Western Australian Department of Biodiversity, Conservation and Attractions Kensington WA Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruthrof</LastName>
<ForeName>Katinka X</ForeName>
<Initials>KX</Initials>
<AffiliationInfo>
<Affiliation>Biodiversity and Conservation Science Western Australian Department of Biodiversity, Conservation and Attractions Kensington WA Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Phytophthora Science and Management Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Challis</LastName>
<ForeName>Anthea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hardy</LastName>
<ForeName>Giles</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Centre for Phytophthora Science and Management Environmental & Conservation Sciences Murdoch University Murdoch WA Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Byrne</LastName>
<ForeName>Margaret</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Biodiversity and Conservation Science Western Australian Department of Biodiversity, Conservation and Attractions Kensington WA Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tissue</LastName>
<ForeName>David T</ForeName>
<Initials>DT</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rymer</LastName>
<ForeName>Paul D</ForeName>
<Initials>PD</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0988-4351</Identifier>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>Dryad</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.5061/dryad.nk98sf7pv</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Corymbia calophylla</Keyword>
<Keyword MajorTopicYN="N">climate adaptation</Keyword>
<Keyword MajorTopicYN="N">general additive models</Keyword>
<Keyword MajorTopicYN="N">heritability</Keyword>
<Keyword MajorTopicYN="N">intraspecific variation</Keyword>
<Keyword MajorTopicYN="N">trait coordination</Keyword>
</KeywordList>
<CoiStatement>None declared.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31988725</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.5890</ArticleId>
<ArticleId IdType="pii">ECE35890</ArticleId>
<ArticleId IdType="pmc">PMC6972804</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 1997 Nov;112(4):492-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Sep 1;357(6354):917-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28860384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Dec;212(4):1007-1018</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27373446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 May;99(5):1003-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16595553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Jan 14;529(7585):167-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26700811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2019 May;28(10):2502-2516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30950536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20231481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2017 Apr;20(4):412-425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28198076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1444-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2018 Mar;41(3):646-660</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29314083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):396-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25988920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2016 Jan;22(1):137-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26061811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13730-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9391094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Jan;23(1):38-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2019 Apr 15;12(6):1178-1190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31293630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Oct;195(2):495-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23934884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Mar 17;6:23284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26983909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Jul 29;4(7):e6392</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19641600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2017 Apr;20(4):539-553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28220612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Feb;126(4):457-461</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1458-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jun 15;7:791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27379112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11823-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18697941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2008 Feb;1(1):95-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2016 Apr;180(4):923-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26796410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2013 Jan 4;110(1):018104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23383844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Feb 12;8(1):2870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29434266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Jan;35(1):34-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25536961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 May 1;37(5):583-592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28338733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(1):8-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26625343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Apr;206(2):614-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25581061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Jul;103(1):43-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Feb;118(2):248-255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1996 Jan;92(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24166116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Apr;139(2):163-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14767753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Feb;97(1):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2014 Jan;29(1):33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24148292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 Aug 1;37(8):1095-1112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28460131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 22;428(6985):821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Dec;27(12):1761-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jun;166(3):791-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15869642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 2;421(6918):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12511946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2011 Feb;26(2):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21196061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2012 May 15;3:837</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22588299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1456-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Dec;200(4):950-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23902460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2013 Aug;28(8):482-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23721732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(1):123-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26378984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jan 21;331(6015):324-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21252344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2004 Oct;94(4):507-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Feb 24;470(7335):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21350480</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Ahrens, Collin W" sort="Ahrens, Collin W" uniqKey="Ahrens C" first="Collin W" last="Ahrens">Collin W. Ahrens</name>
<name sortKey="Andrew, Margaret E" sort="Andrew, Margaret E" uniqKey="Andrew M" first="Margaret E" last="Andrew">Margaret E. Andrew</name>
<name sortKey="Byrne, Margaret" sort="Byrne, Margaret" uniqKey="Byrne M" first="Margaret" last="Byrne">Margaret Byrne</name>
<name sortKey="Challis, Anthea" sort="Challis, Anthea" uniqKey="Challis A" first="Anthea" last="Challis">Anthea Challis</name>
<name sortKey="Hardy, Giles" sort="Hardy, Giles" uniqKey="Hardy G" first="Giles" last="Hardy">Giles Hardy</name>
<name sortKey="Mazanec, Richard A" sort="Mazanec, Richard A" uniqKey="Mazanec R" first="Richard A" last="Mazanec">Richard A. Mazanec</name>
<name sortKey="Ruthrof, Katinka X" sort="Ruthrof, Katinka X" uniqKey="Ruthrof K" first="Katinka X" last="Ruthrof">Katinka X. Ruthrof</name>
<name sortKey="Rymer, Paul D" sort="Rymer, Paul D" uniqKey="Rymer P" first="Paul D" last="Rymer">Paul D. Rymer</name>
<name sortKey="Tissue, David T" sort="Tissue, David T" uniqKey="Tissue D" first="David T" last="Tissue">David T. Tissue</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000086 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000086 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31988725
   |texte=   Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31988725" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024